

Mehr Wert. Mehr Vertrauen.

Artificial Intelligence and Functional Safety

A summary of the current challenges

Volker Schneider TÜV SÜD Rail GmbH Rail Automation

27. May 2021

TÜV

21-05-27

Our Expert

Volker Schneider Expert Functional Safety at TÜV SÜD

Background:

- Volker worked for 5 years as research assistant at TU München.
- He did his Ph.D. in the field of trajectory generation for integrated flight guidance.
- In this function he was developing model based software for a manned experimental aircraft under consideration of safety related aspects like traceability, testability and architectural aspects related to model based development.
- Volker joined TÜV SÜD in 2017 as functional safety assessor for several domains regarding the standards IEC 61508, and ISO 26262.

Where is AI discussed International....

ISO/IEC JTC 1/SC 42 [1]

WG1: Standardization of Terms

e.g. ISO/IEC 22989: AI – Concept and Terminology WG2: Data + Data quality

e.g. ISO/IEC 24688 Information Technology – Artificial Intelligence – Process management framework for Big data analytics

WG3: Trustworthiness

ISO/IEC AWI TR 5469 Artificial intelligence — Functional safety and AI systems

WG4: Use Cases

e.g. ISO/IEC 24030 Information Technology – Artificial Intelligence – Use Cases

WG5: Calculation Aspects+ Characteristics

e.G ISO/IEC 24372 Information Technology – Artificial Intelligence – Overview of computational approaches for AI Systems

IEEE P7000 [2]

IEEE P7000[™] - Standard for Model Process for Addressing Ethical Concerns During System Design IEEE P7001[™] - Standards for Transparency of Autonomous Systems IEEE P7002[™] - Standard for Data Privacy Process

IEEE P7009[™] - Standard for Fail-Safe Design of Autonomous and Semi-Autonomous Systems

IEEE P7014[™] - Standard for Ethical considerations in Emulated Empathy in Autonomous and Intelligent Systems

Al on european level

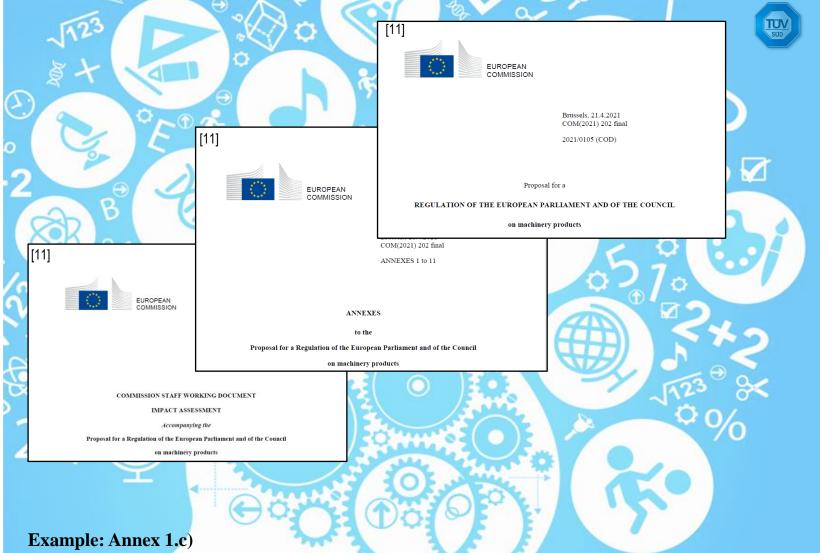
European Comisssion

- Several publications regarding AI topic
- Latest from April 2021

European Comitee for Standardization CEN:

- Supports the activities of ISO/IEC JTC1 SC42
- Established a Focus Group on Artificial Intelligence

TÜV SÜD Rail GmbH | Artificial Intelligence and Functional Safety

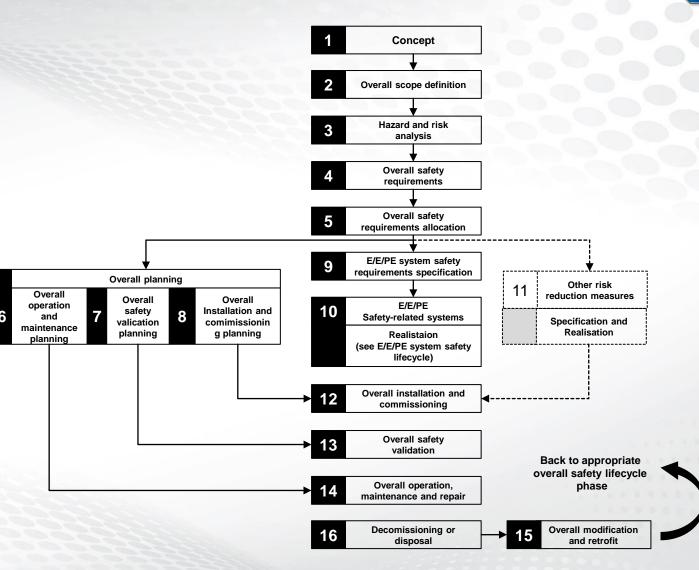


Machinery directive

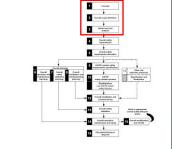
- Proposal recently published
- Annex document: Relation also to AI / autonomous levels
- Sections to consider:

- 1. c)
- 1.1.6 e) and f)
- 1.2.1

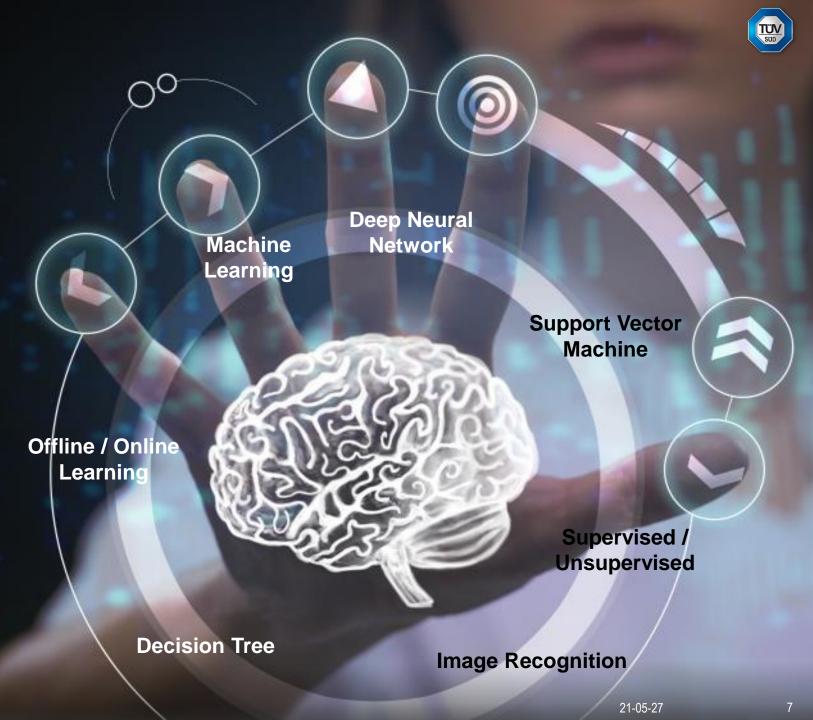
- 1.3.7.

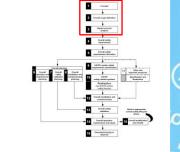


In this respect, where the machinery product integrates an artificial intelligence system, the machinery risk assessment **shall consider the risk assessment for that artificial intelligence system that has been carried out pursuant to the Regulation ...** of the European Parliament and of the Council+ on a European approach for Artificial Intelligence+1; .


Development lifecycle

 Content: Specific aspects of the development lifecycle according to IEC 61508:2010

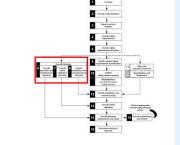

Evaluation regarding specific AI related topics


Concept / Risk Analysis

- ISO/IEC 2382:2015: "Artificial Intelligence (AI): Capability of a function unit to perform functions that are generally associated with human intelligence such as reasoning and learning"
- Term "Al" often misinterpreted.
- It is important to clearly point out what exactly is meant.

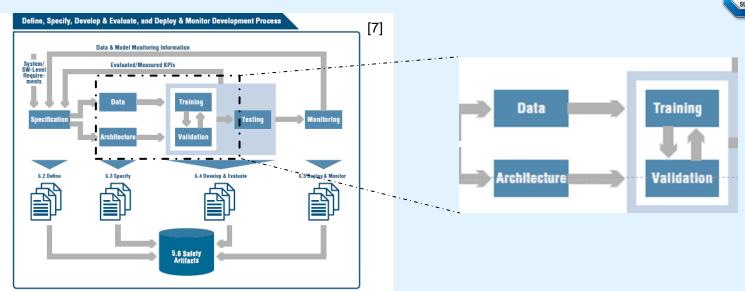
Concept / Risk Analysis

- Known risk analysis approaches on item level also applicable.
- **BUT:** Are extisting standards adequate for AI handling?
- TR 5469: Discussion regarding AI algorihm classification


5 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	AI Class I Evaluation possible	Al Class II Evaluation partly not possible, but applicable with addtitional measures	Al Class III Evaluation not sufficiently possible, additional measures not sufficiently applicable
Usage Level A Al in E/E/PE-system for diagnosis (A2) or for control (A1) Usage Level B1 or B2 Al for the development of an E/E/PE-system as a support tool (B2) or as a validation tool (B1) Usage Level C	Existing standards for risk mitigation measures regarding Functional Safety are applicable	Area of new methods and measures to specify	Use not recommended
Al not safety relevant but with interference to safety system			
Usage Level D AI not safety relevant and free from interference to safety system	Existing risk mitigati	on measures regarding Functional S	Safety are applicable
Based on [10]			

8

21-05-27


Functional Safety Management

- Classical Safety Management elements (e.g. configuration management, change management, safety planning,...) are applicable
- BUT: for AI development differ from conventional development
 - Data handling
 - Model training

See also:

https://wiki.eclipse.org/images/0/0e/WhitePaper_Process_considerations-A_reliable_AI_data_labeling_process.pdf

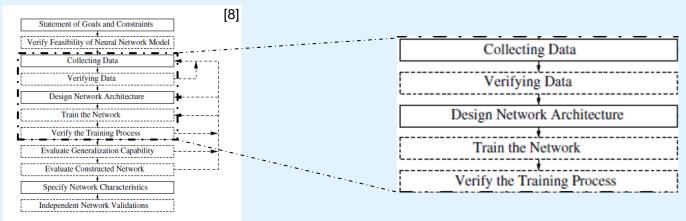
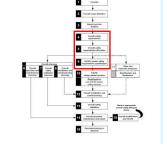
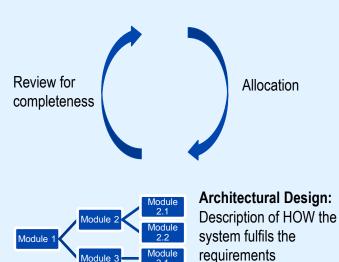



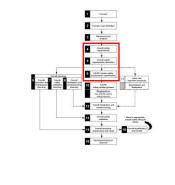
Fig. 2 The development cycle of a neural network

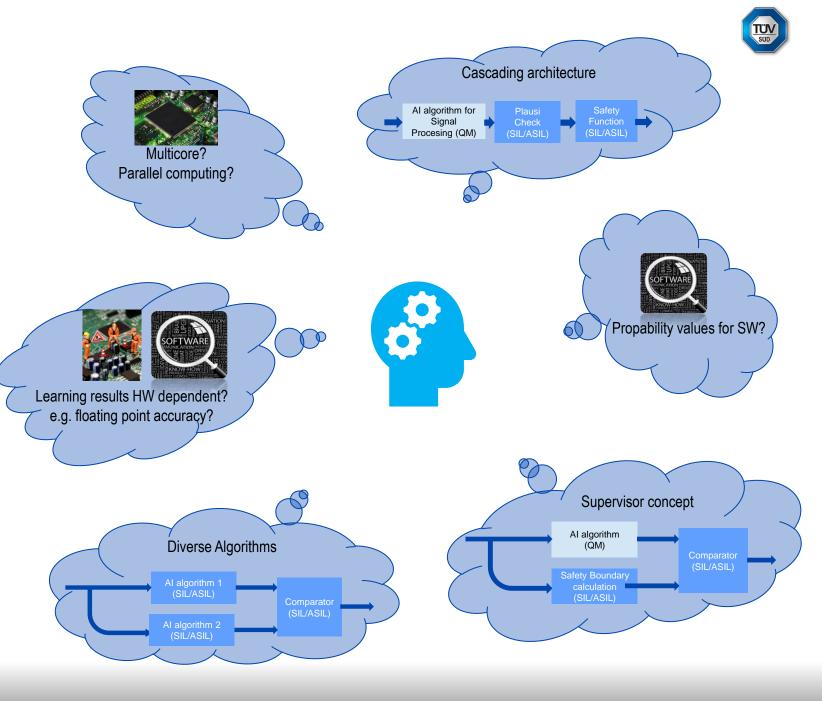
Requirements Specification



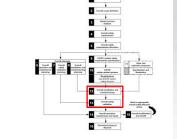
- Classic approach: Behavior fully specified by requirements.
- AI /ML: Behavior specified by dedicated test points.
- Training Data quality essential
- Question: Is the specification "complete enough"?

Classical Approach

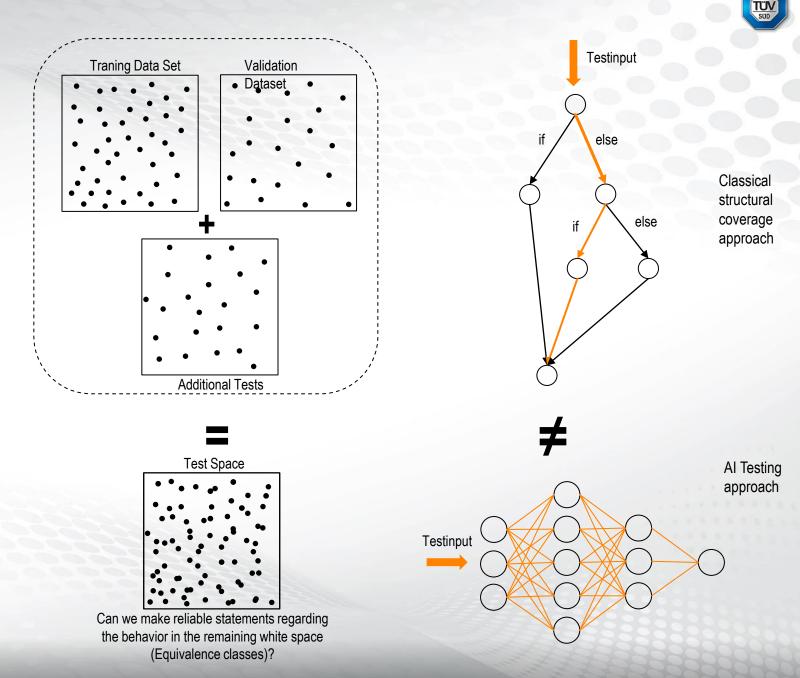

Requirements: WHAT shall be done?


Machine Learning Approach Traning Data Set Validation Dataset (independent from training data) Validation of **Requirements:** correct Training / "Specification" via behavior via desired behavior at other test dedicated points points Architectural Design: Chosen algorithm structure together with trained model data

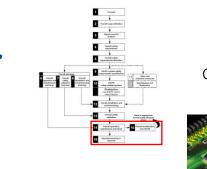
10



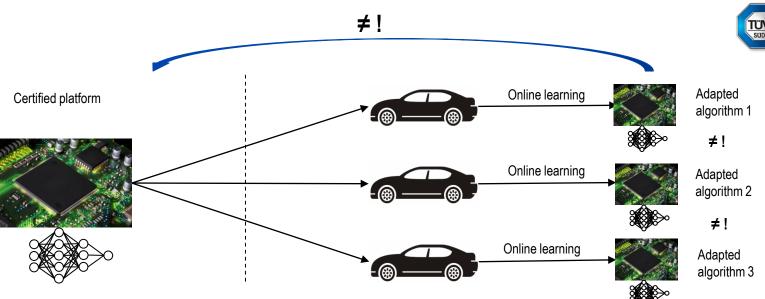
- Questions and topics to discuss:
 - Deep neural network as a "deterministic" algorithm?
 - HW handling: AI topics do consider?
 - Which Architecture to be used?
 - i. Supervisor
 - ii. Diverse Algorithms
 - iii.Cascading architecture

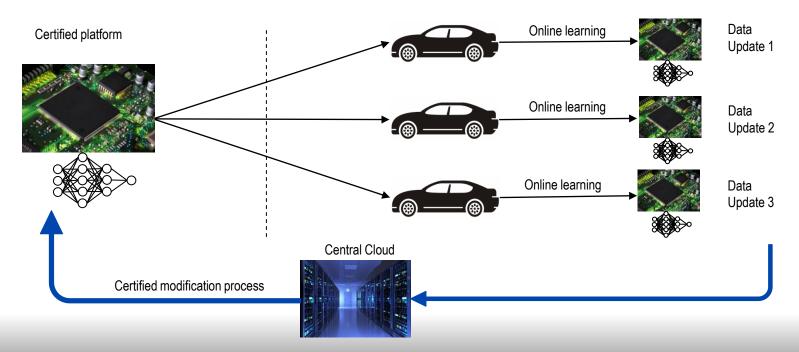


Requirements Verification



 Challenge: How to test a system without a "complete" specification


 Does the structural coverage provide the similar statement compared to classic SW development?


Field behavior

- Is the system learning during field operation?
- What is then the result of an assessment?
- Is it possible to establish online "quality measures" for an AI system?
- For specific approaches, also a central "online learning" could be a solution (e.g. central map management)

Discussed approach for specific use cases:

Thank you for your attention!

TÜV SÜD Rail GmbH | Artificial Intelligence and Functional Safety

21-05-27

14

References

[1]	https://www.iso.org/committee/6794475.html
[2]	https://standards.ieee.org/initiatives/artificial-intelligence-systems/standards.html#p7000
[3]	https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
[4]	https://ftp.cencenelec.eu/EN/EuropeanStandardization/Sectors/AI/CEN-CLC_FGR_RoadMapAI.pdf
5]	https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN
6]	https://ftp.cencenelec.eu/EN/News/PolicyOpinions/2020/CEN-CLC_AI_FG_White-Paper-Response_Final-
	Version_June-2020.pdf
[7]	see e.g. https://www.daimler.com/innovation/case/autonomous/safety-first-for-automated-driving-2.html
8]	J. Schumann, Y. Liu (Eds.): Appl. of Neural Networks in High Assur. Sys., SCI 268, pp. 1–19
9]	https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-
	intelligence-artificial-intelligence
[10]	H. Laible: "Eine KI Klassifikation für Safety", Safe. Tech 2021
[11]	https://ec.europa.eu/docsroom/documents/45508?locale=fi